Link Prediction on Latent Heterogeneous Graphs

Trung-Kien Nguyen*
Singapore Management University
Singapore
tknguyen@smu.edu.sg

Zemin Liu*†
National University of Singapore
Singapore
zeminliu@nus.edu.sg

Yuan Fang
Singapore Management University
Singapore
yfang@smu.edu.sg

WWW 2023

Code:None.

2023. 7. 13 • ChongQing

Reported by Yang Peng

1.Introduction

2.Method

Introduction

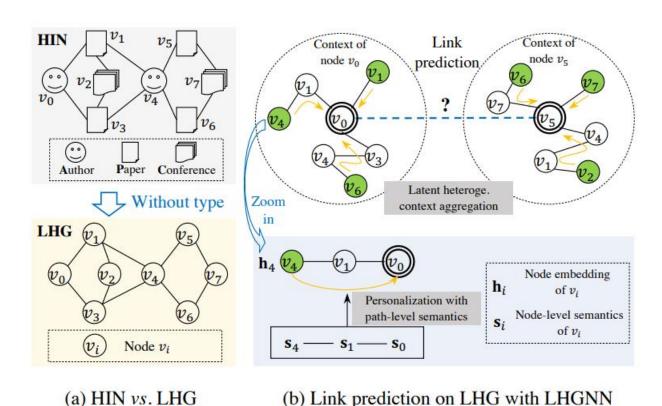


Figure 1: Illustration of our problem and approach. (a) Comparison of HIN and LHG. (b) Key insights of our approach.

Problem:

in many real-world, scenarios, type information is often **noisy, missing or inaccessible**.

Contributions:

- (1)We investigate a novel problem of link prediction on latent heterogeneous graphs, which differs from traditional HINs due to the absence of type information.
- (2) We propose a novel model **LHGNN** based on the key idea of **semantic embedding** to bridge the gap for representation learning on LHGs. LHGNN is capable of inferring both node- and path-level semantics, in order to personalize **the latent heterogeneous contexts for finer-grained message passing** within a GNN architecture.

Method

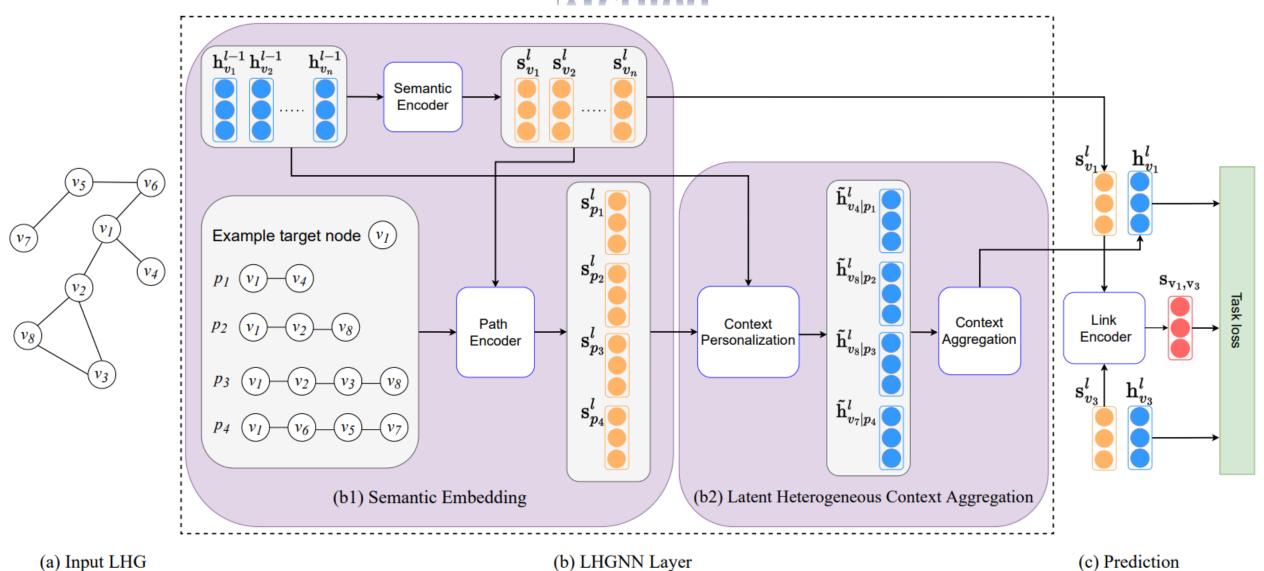
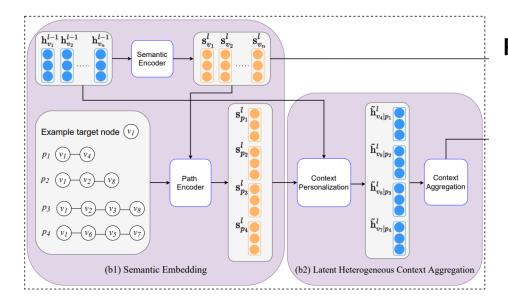



Figure 2: Overall framework of LHGNN.

Figure 2: Overall framework of LHGNN.

Method

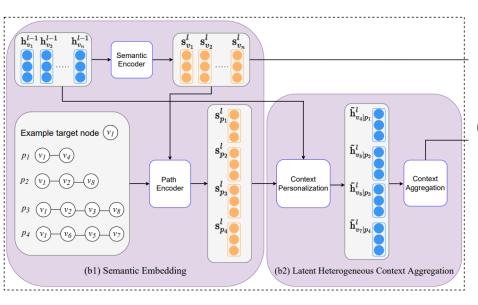
Semantic Embedding

Node-level semantic embedding

primary embedding \mathbf{h}_v previous layer¹ $(\mathbf{h}_{v_1}^{l-1}, \mathbf{h}_{v_2}^{l-1}, \ldots)$

$$\mathbf{s}_{v}^{l} = \text{LeakyReLU}(\mathbf{W}_{s}^{l}\mathbf{h}_{v}^{l-1} + \mathbf{b}_{s}^{l}), \tag{1}$$

Path-level semantic embedding


$$\mathbf{s}_{p_i}^l = f_p(\{\mathbf{s}_{v_j}^l \mid v_j \text{ in the path } p_i\}),$$

$$\text{path } p_i \in P_v$$
(2)

 P_v denote the set of sampled path

p_4 v_1 v_6 v_5 v_7 (b1) Semantic Embedding (b2) Latent Heterogeneous Context Aggregation (a) Input LHG (b) LHGNN Lave

Figure 2: Overall framework of LHGNN.

Method

Latent Heterogeneous Context Aggregation

Context personalization

$$\tilde{\mathbf{h}}_{u|p}^{l} = \tau(\mathbf{h}_{u}^{l-1}, \mathbf{s}_{p}^{l}; \theta_{\tau}^{l}), \tag{3}$$

transformation function $\tau(\cdot; \theta_{\tau}^{l})$ $\theta_{\tau}^{l} = \{\mathbf{W}_{\gamma}^{l}, \mathbf{W}_{\beta}^{l}, \mathbf{b}_{\gamma}^{l}, \mathbf{b}_{\beta}^{l}\}.$

$$\theta_{\tau}^{l} = \{\mathbf{W}_{\gamma}^{l}, \mathbf{W}_{\beta}^{l}, \mathbf{b}_{\gamma}^{l}, \mathbf{b}_{\beta}^{l}\}.$$

$$\tilde{\mathbf{h}}_{u|p}^{l} = (\gamma_p^l + 1) \odot \mathbf{h}_u^{l-1} + \beta_p^l,$$

(4)

$$\gamma_p^l = \text{LeakyReLU}(\mathbf{W}_{\gamma}^l \mathbf{s}_p^l + \mathbf{b}_{\gamma}^l),$$

$$\beta_p^l = \text{LeakyReLU}(\mathbf{W}_{\beta}^l \mathbf{s}_p^l + \mathbf{b}_{\beta}^l), \tag{6}$$

Context aggregation

$$\mathbf{c}_{v}^{l} = \text{Mean}(\{e^{-\lambda L(p)}\tilde{\mathbf{h}}_{u|p}^{l} \mid p \in P_{v}\}), \tag{7}$$

L(p) gives the length of the path p

$$\mathbf{h}_{v}^{l} = \text{LeakyReLU}(\mathbf{W}_{h}^{l} \mathbf{c}_{v}^{l} + \mathbf{b}_{h}^{l}), \tag{8}$$

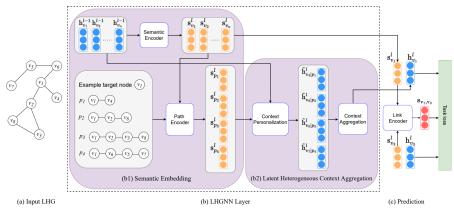
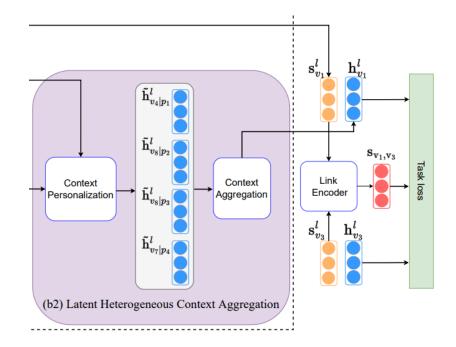



Figure 2: Overall framework of LHGNN.

Method

Link Prediction

Link encoder

$$\mathbf{s}_{a,b} = \tanh (\mathbf{W}\mathbf{s}_b + \mathbf{U}\mathbf{s}_a + \mathbf{b}),$$
 (9)
 $\mathbf{W}, \mathbf{U} \in \mathbb{R}^{d_s \times d_h}$

Loss function

construct a triplet (a, b, c)

$$\mathcal{L}_{\text{task}} = \frac{1}{|T|} \sum_{(a,b,c) \in T} \max \left(d(a,b) - d(a,c) + \alpha, 0 \right), \quad (10)$$

$$\mathcal{L}_{\text{FiLM}} = \sum_{l=1}^{\ell} \sum_{p \in P} (\|\gamma_p^l\|_2 + \|\beta_p^l\|_2), \tag{11}$$

$$\mathcal{L} = \mathcal{L}_{\text{task}} + \mu \mathcal{L}_{\text{FiLM}},\tag{12}$$

Table 1: Summary of Datasets.

Attributes	FB15k-237	WN18RR	DBLP	OGB-MAG
# Nodes	14,541	40,943	18,405	100,002
# Edges	310,116	93,003	67,946	1,862,256
# Features	-	-	334	128
# Node types	-	-	3	4
# Edge types	237	11	4	4
Avg(degree)	29.09	3.50	3.55	17.88
# Training	272,115	86,835	54,356	1,489,804
# Validation	17,535	3,034	6,794	186,225
# Testing	20,466	3,134	6796	186,227

Table 2: Evaluation of link prediction on LHGs. Best is bolded and runner-up underlined; OOM means out-of-memory error.

Methods	FB15	FB15k-237		WN18RR		DBLP		OGB-MAG	
Methods	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG	
GCN	0.790 ± 0.001	0.842 ± 0.001	0.729 ± 0.002	0.794 ± 0.001	0.879 ± 0.001	0.910 ± 0.001	0.848 ± 0.001	0.886 ± 0.001	
GAT	0.786 ± 0.002	0.839 ± 0.001	0.761 ± 0.001	0.818 ± 0.001	0.913 ± 0.001	0.936 ± 0.001	0.830 ± 0.004	0.872 ± 0.003	
GraphSAGE	0.800 ± 0.001	$\underline{0.850} \pm 0.001$	0.728 ± 0.003	0.793 ± 0.002	0.891 ± 0.001	0.918 ± 0.001	0.849 ± 0.001	$\underline{0.887} \pm 0.001$	
TransE	0.675 ± 0.001	0.752 ± 0.001	0.511 ± 0.002	0.624 ± 0.001	0.488 ± 0.001	0.605 ± 0.001	0.552 ± 0.001	0.656 ± 0.001	
TransR	0.734 ± 0.004	0.798 ± 0.003	0.510 ± 0.002	0.623 ± 0.001	0.565 ± 0.007	0.668 ± 0.005	0.546 ± 0.001	0.652 ± 0.001	
HAN	0.725 ± 0.002	0.793 ± 0.002	0.749 ± 0.003	0.810 ± 0.003	0.763 ± 0.005	0.801 ± 0.004	OOM	OOM	
HGT	0.782 ± 0.001	0.837 ± 0.001	0.724 ± 0.003	0.791 ± 0.002	0.897 ± 0.001	0.923 ± 0.001	0.835 ± 0.003	0.876 ± 0.002	
HGN	0.742 ± 0.002	0.806 ± 0.001	0.802 ± 0.002	$\underline{0.849} \pm 0.002$	0.907 ± 0.003	0.930 ± 0.002	0.818 ± 0.001	0.863 ± 0.001	
LHGNN	0.858 ± 0.001	0.893 ± 0.001	0.838 ± 0.003	0.877 ± 0.002	0.932 ± 0.003	0.949 ± 0.002	0.879 ± 0.001	0.909 ± 0.001	

Table 3: Evaluation of link prediction on LHGs with pseudo types for heterogeneous GNNs and translation models.

Methods	FB15k-237		WN18RR		DBLP		OGB-MAG	
Methods	MAP	NDCG	MAP	NDCG	MAP	NDCG	MAP	NDCG
TransE-3	0.693	0.767	0.510	0.623	0.599	0.693	0.568	0.670
TransE-10	0.701	0.773	0.519	0.630	0.677	0.754	0.599	0.694
TransR-3	0.749	0.810	0.485	0.604	0.585	0.683	0.599	0.695
TransR-10	0.727	0.794	0.497	0.614	0.631	0.719	OOM	OOM
HAN-3	0.594	0.685	0.673	0.616	0.603	0.687	OOM	OOM
HAN-10	0.648	0.734	0.384	0.529	0.618	0.708	OOM	OOM
HGT-3	0.799	0.850	0.733	0.797	0.888	0.916	0.837	0.878
HGT-10	0.750	0.812	0.607	0.701	0.857	0.893	0.837	0.878
HGN-3	0.746	0.809	0.814	0.859	0.903	0.927	0.815	0.861
HGN-10	0.735	0.800	0.822	0.864	0.898	0.923	0.813	0.859

Table 4: Evaluation of link prediction on HINs with full access to node/edge types for heterogeneous GNNs. Percentages in parenthesis indicate the improvement to their performance on LHGs (cf. Table 2).

V-41 4-	DE	BLP	OGB-MAG		
Methods	MAP	NDCG	MAP	NDCG	
HAN	0.789 (+3.4%)	0.821 (+2.5%)	OOM	OOM	
HGT	0.902 (+0.6%)	0.927 (+0.4%)	0.872 (+4.4%)	0.904 (+3.2%)	
HGN	0.909 (+0.2%)	0.932 (+0.2%)	0.855 (+4.5%)	0.892 (+3.4%)	

Table 5: Evaluation of node type classification on LHGs.

Methods	DE	BLP	OGB-MAG		
	MacroF	Accuracy	MacroF	Accuracy	
GCN	0.376 ± 0.009	0.785 ± 0.002	0.599 ± 0.011	0.890 ± 0.003	
GAT	0.310 ± 0.003	0.782 ± 0.001	0.624 ± 0.035	0.894 ± 0.007	
GraphSAGE	0.477 ± 0.021	$\underline{0.842} \pm 0.012$	0.550 ± 0.014	0.902 ± 0.004	
HGT	0.464 ± 0.009	0.837 ± 0.005	0.823 ± 0.018	0.973 ± 0.003	
HGN	0.292 ± 0.001	0.778 ± 0.001	0.531 ± 0.003	0.847 ± 0.003	
LHGNN	0.662 ± 0.001	0.995 ± 0.001	0.884 ± 0.002	<u>0.953</u> ± 0.001	

Table 6: Training time.

Nodes	Edges	Time	Epochs
20k	370k	1084s	24
40k	810k	1517s	11
60k	1.2M	2166s	8
80k	1.6M	2428s	6
100k	1.8M	2251s	5

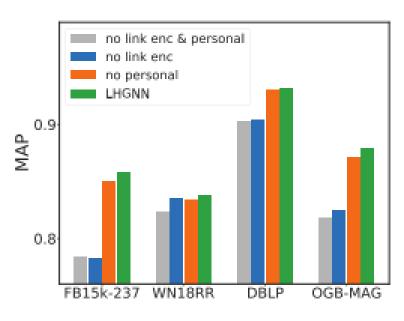


Figure 3: Ablation study.

Thank you!